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ABSTRACT

The spread of communicable diseases is often testcmathematically by compartmental models andieghpd
control the epidemic. In this paper a nonlinearheatatical deterministic compartmental SVIS modeltfi@ dynamics of
infectious disease including the role of a prewentraccine is proposed and analyzed. The model&iasus kinds of
parameter such as natural birth rate, natural destth and dieses related death rate. Also incorrmgigrants are
considered in this model. A model for the transiisglynamics of an infectious disease has beerepted and analyzed

the stability of equilibrium points of this model.
KEYWORDS: Basic Reproduction Number, Diseases Free Equilinrinfectious Diseases, Stability Analysis
INTRODUCTION

Mathematical modeling is one of the most importardterials to analyze the characteristic of an iides
disease. One of the early triumphs of mathemagipalemiology was the formulation of a simple molglKermack and
McKendrick in 1927 [1]. The Kermack-McKendrick mddis a compartmental model based on relatively &mp
assumptions on the rates of flow between diffectagses of members of the population [2]. Variansi of deterministic
models for the spread of infectious disease hawn tenalyzed by mathematical modeling to control epéalemic.
Epidemiological models have two kinds of equililnigoints. One of them is disease free equilibriDRE) at which the
population remains in the absence of disease dret @& endemic equilibrium [3]. There are two maijgpes of control
strategies available to curtail the spread of ities diseases: pharmaceutical interventions (drugscines etc) and
non-pharmaceutical interventions (social distancingarantine). Vaccination is important for therefiation of infectious
disease in pharmaceutical interventions. Arinol éhtaoduced vaccination of susceptible individual® an SIRS model
and also considered vaccinating a fraction of nemé&g@]. Buonomo et al studied the traditional StRdel with 100%
efficacious vaccine [5]. Effective vaccines havemaised successfully to control smallpox, polio amhsles. In this
paper an SIS type disease has been considered avh@gcination program is in effect. The epidemicdals with

vaccination have been investigated recently by sautieors[8—13]
MODEL FORMULATION

Let S(t) be the number of population who are susceptiblartoinfection at timet, 1(t) be the number of
members who are infective at timeandV (t) be the number of members who are vaccinated attti®uppose the total
population size at timeis N(t), with N(t) = S(t) +V (t) +1(t) . Assume that each infective maked contacts sufficient

to transmit infection in unit time, where is a constant. When an infective makes contactptbbability of producing a

new infection isS/N , since the new infection can be made only wheardgact is made with a susceptible. Thus, the rate

of producing new infections iaN.%.l =ad . Suppose susceptible population is vaccinated edrestant ratez We
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assume that there can be disease related deathsllaas natural deaths unrelated to the disease. pdpulation is
replenished in two ways, birth and immigration. \W&sume that all newborns enter the susceptibls eas constant

rate/A and there is a constant incoming flow A of immigsawhere some portion of immigrants p, is infeetiv
In summary, the assumptions we have in this misdes follows:

o S(t),I(t), V(t) and N(t) are the numbers of susceptible, infective, vadeithaand total population at time t,

respectively.

e There is a constant flow A of new members intogbpulation per unit time, where fractiomof immigrants is

infective (0< p<1).

* The vaccine has effect of reducing infection byetdr of o , so thato =0 means that the vaccine is completely

effective in preventing infection, while =1 means that the vaccine is utterly ineffective.
* ¢ is the rate at which the susceptible populatioratcinated.
* The disease can be fatal to some infective andefieed 3 to be the rate of disease related death.
* There is a constant per capita natural death giatd® in each class.
* Fraction y = 0of infective recovers in unit time.

* aN is the infectious contact rate per person in timié.
e Alis the constant natural birth rate, with all newlsocoming into the susceptible class.

e Alis the constant incoming flow of immigrants.
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Figure 1: Diagram of SVIS Model

The differential equations of this model are gitgn

S=@0-p)A+A-a9 - (u+@yS+u
I'= pA+ad +oaVl —(u+y+ )l 1)
V' = ¢8-oaVl — N

Note that the total population is the sum of thelesses: susceptible, infective and vaccinated, i.e
N(t) = S(t) +V () +1(t) (2)

So, N'(t) = S(t) +V'(t) + I'(t)
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Using (1) we get
N'(t)=A+A-pu(S+V+I1)-A

= N'=A+A- N - A [using (2)]

We can get an alternate but yet equivalent modeéphacingS with N-V-1. Now the model becomes:

I'= pA+al[N-1-(1-0)V]-(u+y+pB)l
= V' =@N=-1)-agaVl - (u+gV ®3)
N'=A+A-iN-A

EQUILIBRIUM CONDITIONS

We can write the equilibrium conditions by lettitige right hand side equations of (3) to be zer@ &duilibrium

conditions are

pA+al[N =1 -(@1-o)V]-(u+y+pB)I =0 (4)
AN =1)-cgaVl - (u+@V =0 (5)
A+A=iN-B =0 ©)
From (6) we get N =w

g(N-1)

Again from (5) we get V =
ol +u+g@

vodA+A=B+l] | _A+A-A
u(oal + p+g) H

=

EliminatingN andV by substitution of these expressions into the ggug4), we get the equilibrium condition of

the form

pA+m[—A+’L"ﬁ' -1-@-0) dﬁ:gg_fﬁigl]}—(wwﬁ)l =0

Now simplifying by wxMaxima, we obtain an expressiavolving | of the form

EI*+BI*+Cl +D =0,

whereE=ao(f+u), B=-(A+N)ga+(B+u)(u+og)+ou(u+y+p)

__ _ Huty+B)u+e) o __ HPALtY)
C =~wpoA-(A+N)(u+og) + po . D po

In this case the model has no dieses free equitibri

Theorem (Routh—Hurwitz stability criterion [6]) : Given theharacteristics polynomial

P(/]):An +a1/1n—1+a2/]n—2+a3/1n—3+ ..... +a,
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where the coefficient®; are real constant fdr= 123,.....n, define the Hurwitz matrices using the coefficgnt

g, of the characteristics polynomial as follows

a 1 a 1 O
H1=[a1],H2={a3 aJ.Hszae a, a
as a,

[ 1 0 O 0]

(A=Y
o

4
8 &
8

0 0 0 0 - a

wherea; =0 if j>n. All of the roots of the polynomial equatid®(1) =0 are negative or have negative real

part iff the determinants of all Hurwitz matrice® positive.

i.e., detH;) >0, for j=123,....... n.

When n = 2, the Routh—Hurwitz stability criterion simplify to

dett,) =a, >0

and H2={a1 1}:aia2>0

0 a,

or, 3 >0 and a,>0. For polynomial of degreen=23 and 4, the Routh—Hurwitz stability criterion is

summarized as follows:
Nn=2:4a >0 anda, >0.
n=3:4a >0, a,>0 andaa, >a,.
n=4:a>0,a,>0,a,>0andaa,a, >a, +aa,.
EQUILIBRIUMS AND STABILITY ANALYSIS

In order to study the stability of steady statesstsat a qualitative approach by linearization 8. (Now the

jacobean matrix of the system (3) is

a o ar
ol oV ON
so|V v oV
ol oV ON
ol oV ON

a[N—(l—a)V—I]—aI—(,u+y+,B) -a(l-o)l al
= J= ~ (¢t oaV) —oal -(u+g) @
- 0 -HU
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Using the equation (4), we can rewrite the jacalbeatrix as

—r:—A—a'I -a(l-o)l al
J=|-(ptoaV) -oal -(u+¢y) ¢
- 0 U

After a complicated computation (with wxMxima), wan obtain its characteristic equation as:
A+al+a,d+a,=0,

where a = (@1+0)dl +F:—A+2/1+(o

a, =(m +p|—A+ﬂ](ﬂ+¢+Um)+%{m +pTA]+af:’l - a1 - 0)(@+ oaV)

3 =/-{0'| +p|—A](u+¢+am)—wl (L~ 0)(g+oaV)+ap (u+0p +oal)

By the Routh-Hurwitz Criterion, the steady statgliobally stable if and only if
a >0, a,>0 andaa, >a,
The Figure 2 is the bifurcation curgevs | (herea =09, =07, y=12,0=02, u=01, p=04,A=3

and A=2) which demonstrates a case where an equitibgraph loses its stability as the vaccinatiate g , increases and

becomes stable again. At the point where it losesllstability first, Hopf-bifurcation occurs andperiodic solution

appears for some values ¢f
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Figure 2: Bifurcation Curve ¢ vs | with Disease-Related Death

THE CASE WHERE THERE ARE NO INFECTIVE IMMIGRANTS

It is worthwhile to consider the case without oifee immigrants since in this case the system héle a
disease-free steady state that would not existwtbe. This model was proposed by Kribs-Zaleta ¥aklasco-Hernandez
[7]. If there is no infective portion from immigres i.e.p = 0, then our equation becomes

S=A+A-a9 - (u+@S+u

I"'=a9 +gaVl —(u+y+ [l

V'=¢B-oaVl — N
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Recall that the total population is the sum oé¢hclasses, susceptible, infective and vaccinaged,
N(t) = S(t) +V(t) + 1 (t)
Thus it follows that N'=S+V'+I'= A+ A-u(S+V +1)-4
= N'=A+A-iN-4
As before we can make a similar transformatiomdpjacingS with N-V-I. Now the model becomes.

I'=a(N-V =Dl +gaVl —(u+y+ p)l
V'=gN-V -1)-oaVl - u

N'= A+A— N -2
I'=al[N-1-@1-0)V]|-(u+y+p)

= V' =g(N-1)-ogaVl —(u+ @V (7
N'= A+A— N -4

We can write the equilibrium conditions by lettitlge right hand side of (7) to be zero. The equiiliim

conditions are

al[N=1-@-oV]-(u+y+p) =0 (8)
@AN-1)-caVl —=(u+@V =0 (9)
A+A—iN-B=0 (10)

From (6) we get N :w

¢g(N-1)

Again from (5) we get V =
g (G)weg ol + g+ g

v dA+A-(B+pt] | _A+A-A

- B
oal + p+g) U

EliminatingN andV by substitution of these expressions into the ggu#4), we get the equilibrium condition of

the form

. AH;\;ﬂ 1 —geyBATA= B

U+y+p) =0
(oal + p+g)

We can further simplify by multiplying:(gal + i + ¢) and factoring out a disease free Equilibrium
1"=0
In order to obtain an endemic condition as thedeaiic equation for the equilibrium valueslaiff the form

EI?+BI +C=0,

where, E=ao(B+u), B=-(A+N)oa+(B+pu)(u+og)+ou(u+y+p)
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__ Hu+y+B)(L+g)
C==(A+N)(u+op+ po

In order to study the stability of steady stateslwearize (4.3.5), obtaining the jacobean matrix.

a[N-@-oV -1]-al -(u+y+p) -a@-o)l al
J= —(p+oaV) —oal -(u+9) @
- 0 -HU

At the disease free equilibriuin =0, The Jacobean becomes

a[N-(@-oV]-(u+y+pB) 0 al
Jo = —(p+oaV) -(u+e @
-B 0 —H

Now we obtain three real eigenvalueskhf as
A=l

Ay ==(u+9

Aa=alN=Q-oN]-(u+y+p) =LUIDALN) 5y iy
MU+ )

For positive parameters, it is clear thiat<0 and A, <0. So the disease free equilibrium is asymptomayical

stable iff A; <0.

N aWrIGA+N) sy v ) <0

H(U+ @)
a(urog)(A+N) _y
MU+ @B+ u+y)
Now we can define the vaccine reproduction nunitjey = a(u+ og)(A+A) . Also by using the endemic
HU+Q(B+u+y)

equilibrium condition, (8) we can evaluate the Jsan matrix at endemic equilibriums.

Using the equation (4), we can rewrite the jacobeatrix as

-al -a(l-o)l al
J=|-(ptoaV) -odl -(u+y ¢
- 0 -HU

with the characteristic equation:
A+at+a,A+a, =0,

where

a =Q1+o)al +2u+g

a, =(al +u)u+¢+oa)+a(u+p) -al Q- 0)(p+oaV)
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a, = ual (,u+ op+oal + 0’0’(0’—1)V)+ apl (,u+ o¢ +oal )

By the Routh-Hurwitz Criterion, the endemic steathte is stable if, >0, a, >0 andaa, > a;.

T
0 s 10 15 20 @

Figure 3: Bifurcation Curve ¢ vs | with No Infective Immigrants

o= HpBrpry) —a(A+h|
oa(A+N)—u(B+u+y)

For this model there is a transcritical bifurcatat

(This is obtained by solvindR(¢) =1 for ¢) and this is demonstrated in Figure 3 (here 09, S= 015,
y=12, 0 =02, u=01, p=0,A=3 and A=2). One can easily see that the lower brasicthe bifurcation curve is
plu(B+u+y) -a(A+A]
oa(A+N\)=u(B+u+y)

= ,u[,u(,8+,u+y)—a(A+/\] . Also the disease free equilibrium is locally &afor ¢ > ,u[,u(ﬂ+,u+y)—a(A+/\] and
oa(A+N) = u(B+u+y) oa(A+N\) = u(B+u+y)
locally unstable otherwise while the Ilower endemiequilibrium becomes locally unstable for
S HpB+p+y) -a(A+A]
oa(A+N)=u(B+u+y)

negative for @< and coincides with the disease free equilibriumt a

@ . In summary these equilibriums exchange stabdisythe endemic equilibrium moves

through the diseasefree equilibriumegt 'U['U(’B+'U+V)_H(A+A]
oa(A+N) = (B +u+y)

HuB+p+y) -a(A+ N
ga(A+N) =B+ u+Y)

and there exists only one epidemiologically felesib

endemic equilibrium forp<

CONCLUSIONS

The purpose of this chapter is to take a clos& miothe endemic behavior of the diseases of S8 tyodel.
To a simple SIS model with vaccination we addedithmigration of infective and the disease-relatedtt. As to the
contact between infective and susceptible we assutiéinear incidence. The result of mathematicslgsis indicates
that a vaccination campaign has an effect of rexdpei reproductive number, which means that theageenumber of
secondary infection caused by an average infettmmmes smaller when vaccination is in effect. larore, in SVIS
model, a vaccination campaign meant to reduceeaséss reproductive number below one, may faibtatrol the disease
when there is a backward bifurcation. Bringing ddtwa vaccination reproductive number just below ovay not be good
enough to eradicate the disease in such a caseifalgere is no immigration of infective, a typi¢eanscritical bifurcation

may be observed. The disease-free equilibrium agmic one coincide a&R(¢) =1 and they exchange the stability at

that point.
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