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ABSTRACT 

The spread of communicable diseases is often described mathematically by compartmental models and applied to 

control the epidemic. In this paper a nonlinear mathematical deterministic compartmental SVIS model for the dynamics of 

infectious disease including the role of a preventive vaccine is proposed and analyzed. The model has various kinds of 

parameter such as natural birth rate, natural death rate and dieses related death rate. Also incoming immigrants are 

considered in this model. A model for the transmission dynamics of an infectious disease has been presented and analyzed 

the stability of equilibrium points of this model. 
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INTRODUCTION 

Mathematical modeling is one of the most important materials to analyze the characteristic of an infectious 

disease. One of the early triumphs of mathematical epidemiology was the formulation of a simple model by Kermack and 

McKendrick in 1927 [1]. The Kermack-McKendrick model is a compartmental model based on relatively simple 

assumptions on the rates of flow between different classes of members of the population [2]. Various kinds of deterministic 

models for the spread of infectious disease have been analyzed by mathematical modeling to control the epidemic. 

Epidemiological models have two kinds of equilibrium points. One of them is disease free equilibrium (DFE) at which the 

population remains in the absence of disease and other is endemic equilibrium [3]. There are two major types of control 

strategies available to curtail the spread of infectious diseases: pharmaceutical interventions (drugs, vaccines etc) and                

non-pharmaceutical interventions (social distancing, quarantine). Vaccination is important for the elimination of infectious 

disease in pharmaceutical interventions. Arino et al introduced vaccination of susceptible individuals into an SIRS model 

and also considered vaccinating a fraction of newborns [4]. Buonomo et al studied the traditional SIR model with 100% 

efficacious vaccine [5]. Effective vaccines have been used successfully to control smallpox, polio and measles. In this 

paper an SIS type disease has been considered when a vaccination program is in effect. The epidemic models with 

vaccination have been investigated recently by some authors[8−13] 

MODEL FORMULATION 

Let )(tS  be the number of population who are susceptible to an infection at time t, )(tI  be the number of 

members who are infective at time t, and )(tV  be the number of members who are vaccinated at time t. Suppose the total 

population size at time t is )(tN , with )()()()( tItVtStN ++= . Assume that each infective makes Nα  contacts sufficient 

to transmit infection in unit time, where α is a constant. When an infective makes contact, the probability of producing a 

new infection is NS , since the new infection can be made only when a contact is made with a susceptible. Thus, the rate 

of producing new infections is SII
N

S
N αα =.. . Suppose susceptible population is vaccinated at a constant rate φ We 
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assume that there can be disease related deaths as well as natural deaths unrelated to the disease. The population is 

replenished in two ways, birth and immigration. We assume that all newborns enter the susceptible class at a constant 

rateΛ  and there is a constant incoming flow A of immigrants where some portion of immigrants p, is infective.  

 In summary, the assumptions we have in this model is as follows:  

• )(tS , )(tI , )(tV  and )(tN  are the numbers of susceptible, infective, vaccinated, and total population at time t, 

respectively. 

• There is a constant flow A of new members into the population per unit time, where fraction p of immigrants is 

infective )10( ≤≤ p . 

• The vaccine has effect of reducing infection by a factor of σ , so that 0=σ  means that the vaccine is completely 

effective in preventing infection, while 1=σ  means that the vaccine is utterly ineffective. 

• φ  is the rate at which the susceptible population is vaccinated. 

• The disease can be fatal to some infective and we define β  to be the rate of disease related death. 

• There is a constant per capita natural death rate 0>µ  in each class. 

• Fraction 0≥γ of infective recovers in unit time. 

• Nα  is the infectious contact rate per person in unit time. 

• Λ is the constant natural birth rate, with all newborns coming into the susceptible class. 

• A is the constant incoming flow of immigrants. 

 

Figure 1: Diagram of SVIS Model 

The differential equations of this model are given by 






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                                                                                                         (1) 

Note that the total population is the sum of three classes: susceptible, infective and vaccinated, i.e.,  

)()()()( tItVtStN ++=                                                                                                                                           (2) 

So, )()()()( tItVtStN ′+′+′=′  



Stability of an SVIS Epidemic Model                                                                                                                                                                                   13 

Using (1) we get 

IIVSAtN βµ −++−Λ+=′ )()(  

⇒  INAN βµ −−Λ+=′ [using (2)] 

We can get an alternate but yet equivalent model by replacing S with N-V-I. Now the model becomes: 

⇒  

[ ]
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                                                                                    (3) 

EQUILIBRIUM CONDITIONS 

We can write the equilibrium conditions by letting the right hand side equations of (3) to be zero. The equilibrium 

conditions are 

[ ] 0)()1( =++−−−−+ IVINIpA βγµσα                                                                                                          (4) 

0)()( =+−−− VVIIN φµσαφ                                                                                                                                (5) 

0=−−Λ+ INA βµ                                                                                                                                                 (6) 

From (6) we get 
µ

βIA
N

−Λ+=  

Again from (5) we get 
φµσα

φ
++

−=
I

IN
V

)(
 

⇒  
[ ]

)(

)(

φµσαµ
µβφ

++
+−Λ+=

I

IA
V  

µ
βIA

N
−Λ+=Q  

Eliminating N and V by substitution of these expressions into the equation (4), we get the equilibrium condition of 

the form 

[ ]
0)(

)(

)(
)1( =++−




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

++
+−Λ+−−−−Λ++ I
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IpA βγµ
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µ
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Now simplifying by wxMaxima, we obtain an expression involving I of the form 

023 =+++ DCIBIEI , 

where, )( µβασ +=E ,  )())(()( βγµσµσφµµβσα ++++++Λ+−= AB   

α
φµβγµµσφµσµ ))((

))((
+++++Λ+−−= AApC , 

α
φµµ )( +−= pA

D  

In this case the model has no dieses free equilibrium. 

Theorem (Routh–Hurwitz stability criterion [6]) : Given the characteristics polynomial  

n
nnnn aaaaP +++++= −−− .....)( 3

3
2

2
1

1 λλλλλ  
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where the coefficients ia  are real constant for ni ,......3,2,1= , define the Hurwitz matrices using the coefficients 

ia  of the characteristics polynomial as follows 
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where 0=ja  if nj > . All of the roots of the polynomial equation 0)( =λP  are negative or have negative real 

part iff the determinants of all Hurwitz matrices are positive.  

i.e., 0)det( >jH , for nj ,.......,3,2,1= . 

When 2=n , the Routh–Hurwitz stability criterion simplify to  

0)det( 11 >= aH   

and 0
0

1
21

2

1
2 >=








= aa

a

a
H  

or, 01 >a  and 02 >a . For polynomial of degree 3,2=n  and 4, the Routh–Hurwitz stability criterion is 

summarized as follows: 

2=n : 01 >a  and 02 >a . 

3=n : 01 >a , 03 >a  and 321 aaa > . 

4=n : 01 >a , 03 >a , 04 >a  and 4
2

1
2

3321 aaaaaa +> . 

EQUILIBRIUMS AND STABILITY ANALYSIS 

In order to study the stability of steady states we start a qualitative approach by linearization of (3). Now the 

jacobean matrix of the system (3) is 
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 Using the equation (4), we can rewrite the jacobean matrix as 
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 After a complicated computation (with wxMxima), we can obtain its characteristic equation as: 
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 By the Routh-Hurwitz Criterion, the steady state is globally stable if and only if 

 01 >a , 03 >a  and 321 aaa >  

 The Figure 2 is the bifurcation curve φ  vs I  (here 9.0=α , 7.0=β , 12=γ , 2.0=σ , 1.0=µ , p=0.4, 3=Λ  

and A=2) which demonstrates a case where an equilibrium graph loses its stability as the vaccination rate φ , increases and 

becomes stable again. At the point where it loses local stability first, Hopf-bifurcation occurs and a periodic solution 

appears for some values of φ .  

 

Figure 2: Bifurcation Curve φ  vs I with Disease-Related Death 

THE CASE WHERE THERE ARE NO INFECTIVE IMMIGRANTS 

 It is worthwhile to consider the case without infective immigrants since in this case the system will have a 

disease-free steady state that would not exist otherwise. This model was proposed by Kribs-Zaleta and Vekasco-Hernandez 

[7]. If there is no infective portion from immigrants, i.e. p = 0, then our equation becomes 
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 Recall that the total population is the sum of three classes, susceptible, infective and vaccinated, i.e.  

 )()()()( tItVtStN ++=  

 Thus it follows that IIVSAIVSN βµ −++−Λ+=′+′+′=′ )(  

 ⇒  INAN βµ −−Λ+=′  

 As before we can make a similar transformation by replacing S with N-V-I. Now the model becomes. 
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 We can write the equilibrium conditions by letting the right hand side of (7) to be zero. The equilibrium 

conditions are 

 [ ] 0)()1( =++−−−− IVINI βγµσα                                                                                                                   (8) 

 0)()( =+−−− VVIIN φµσαφ                                                                                                                                (9) 

 0=−−Λ+ INA βµ                                                                                                                                               (10) 

 From (6) we get  
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 Again from (5) we get  
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 Eliminating N and V by substitution of these expressions into the equation (4), we get the equilibrium condition of 

the form 
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 We can further simplify by multiplying )( φµσαµ ++I and factoring out a disease free Equilibrium 

 0* =I  

 In order to obtain an endemic condition as the quadratic equation for the equilibrium values of I of the form  

 02 =++ CBIEI , 

 where,  )( µβασ +=E ,  )())(()( βγµσµσφµµβσα ++++++Λ+−= AB   
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α

φµβγµµσφµ ))((
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 In order to study the stability of steady states we linearize (4.3.5), obtaining the jacobean matrix. 
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 At the disease free equilibrium 0* =I , The Jacobean becomes 
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 Now we obtain three real eigenvalues of 0J  as  
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 For positive parameters, it is clear that 01 <λ  and 02 <λ . So the disease free equilibrium is asymptomatically 

stable iff 03 <λ . 
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 Now we can define the vaccine reproduction number
))((
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)(
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R . Also by using the endemic 

equilibrium condition, (8) we can evaluate the Jacobean matrix at endemic equilibriums. 

Using the equation (4), we can rewrite the jacobean matrix as 
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 with the characteristic equation: 

 032
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1
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 where  

 φµασ +++= 2)1(1 Ia  

 ( )( ) ))(1()(2 VIIIIa σαφσαβµασαϕµµα +−−+++++=  
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 ( ) ( )IIVIIa σασϕµαβσσασασφµµα +++−+++= )1(3  

 By the Routh-Hurwitz Criterion, the endemic steady state is stable iff 01 >a , 03 >a  and 321 aaa > . 

 

Figure 3: Bifurcation Curve φ  vs I with No Infective Immigrants 

 For this model there is a transcritical bifurcation at 
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(This is obtained by solving 1)( =φR  for φ ) and this is demonstrated in Figure 3 (here 9.0=α , 15.0=β , 

12=γ , 2.0=σ , 1.0=µ ,  p=0, 3=Λ  and A=2). One can easily see that the lower branch of the bifurcation curve is 
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A

A
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CONCLUSIONS 

 The purpose of this chapter is to take a close look at the endemic behavior of the diseases of SIS type model.               

To a simple SIS model with vaccination we added the immigration of infective and the disease-related death. As to the 

contact between infective and susceptible we assume a bilinear incidence. The result of mathematical analysis indicates 

that a vaccination campaign has an effect of reducing a reproductive number, which means that the average number of 

secondary infection caused by an average infective becomes smaller when vaccination is in effect. Furthermore, in SVIS 

model, a vaccination campaign meant to reduce a disease’s reproductive number below one, may fail to control the disease 

when there is a backward bifurcation. Bringing down the vaccination reproductive number just below one may not be good 

enough to eradicate the disease in such a case. Also if there is no immigration of infective, a typical transcritical bifurcation 

may be observed. The disease-free equilibrium and endemic one coincide at 1)( =φR  and they exchange the stability at 

that point.  
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